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It is a challenging problem to establish safe and simple therapeutic methods for various complicated diseases
of the nervous system, particularly dynamical diseases such as epilepsy, Alzheimer’s disease, and Parkinson’s
disease. From the viewpoint of nonlinear dynamical systems, a dynamical disease can be considered to be
caused by a bifurcation induced by a change in the values of one or more regulating parameter. Therefore, the
theory of bifurcation control may have potential applications in the diagnosis and therapy of dynamical
diseases. In this study, we employ a washout filter-aided dynamic feedback controller to control the onset of
Hopf bifurcation in the Hodgkin-Huxley �HH� model. Specifically, by the control scheme, we can move the
Hopf bifurcation to a desired point irrespective of whether the corresponding steady state is stable or unstable.
In other words, we are able to advance or delay the Hopf bifurcation, so as to prevent it from occurring in a
certain range of the externally applied current. Moreover, we can control the criticality of the bifurcation and
regulate the oscillation amplitude of the bifurcated limit cycle. In the controller, there are only two terms: the
linear term and the nonlinear cubic term. We show that while the former determines the location of the Hopf
bifurcation, the latter regulates the criticality of the Hopf bifurcation. According to the conditions of the
occurrence of Hopf bifurcation and the bifurcation stability coefficient, we can analytically deduce the linear
term and the nonlinear cubic term, respectively. In addition, we also show that mixed-mode oscillations
�MMOs�, featuring slow action potential generation, which are frequently observed in both experiments and
models of chemical and biological systems, appear in the controlled HH model. It is well known that slow
firing rates in single neuron models could be achieved only by type-I neurons. However, the controlled HH
model is still classified as a type-II neuron, as is the original HH model. We explain that the occurrence of
MMOs can be related to the presence of the canard explosion where a small oscillation grows through a
sequence of canard cycles to a relaxation oscillation as the control parameter moves through an interval of
exponentially small width.
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I. INTRODUCTION

A dynamical disease is one in which the predominant
symptomatology manifests as a disordered interaction be-
tween the elements of the organ in question, that is, a sys-
temic breakdown in coordination and control �1–5�. Many
neural and mental disorders such as epilepsy, Alzheimer’s
disease, Parkinson’s disease, anxiety, attention deficit hyper-
activity disorder �ADHD�, and schizophrenia may be inter-
preted as dynamical diseases �6–8�. Additionally, panting,
Cheyne-Stokes breathing, sudden infant death syndrome, and
a form of leukemia in which the balance of red and white
blood cells, platelets, and lymphocytes is disrupted, can also
be considered as dynamical diseases �9�. Within the frame-
work of nonlinear dynamical systems, a dynamical disease
can be considered to be caused by a bifurcation induced by a
change in the values of one or more regulating parameters,
not in an anatomical dysfunction. For example, it is reported
that periodic chronic myelogenous leukemia �PCML� can be
induced by a Hopf bifurcation �10�. In fact, each of the
above-mentioned dynamical diseases can result from some

parameter-dependent bifurcation in a corresponding physi-
ological control system. In the case of schizophrenia, the
parameter may be the neurotransmitter dopamine �or seroto-
nin or glutamate�. With a high level of dopamine transmis-
sion, the symptoms of schizophrenia appear, while those of
Parkinson’s disease appear with rather low levels of the
same. On the other hand, a healthy state prevails in the in-
termediate range �7�. Consequently, finding better treatments
to such dynamical diseases requires that we should under-
stand the underlying bifurcation mechanism from the normal
state to the pathological one, and avoid the occurrence of
bifurcations within a certain range of parameters. In this
manner, the theory of bifurcation control may have potential
applications in the diagnosis and therapy of dynamical dis-
eases.

Bifurcation control has attracted increasing attention and
become an ongoing active and fruitful area of research. Bi-
furcation control deals with modification of bifurcation char-
acteristics of a parametrized nonlinear system by a designed
control input, so as to obtain some desired dynamical behav-
ior or to avoid undesirable instability around bifurcations.
The goals of bifurcation control include delaying the onset of
an inherent bifurcation, modifying the shape or type of a
bifurcation chain, introducing a new bifurcation at a prefer-
able parameter value, stabilizing a bifurcated solution or*yxie@mail.xjtu.edu.cn
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branch, changing the parameter value of an existing bifurca-
tion point, monitoring the multiplicity, amplitude, and/or fre-
quency of some limit cycles emerging from bifurcations, op-
timizing the system performance near a bifurcation point, or
a certain combination of some of these �11�. Currently, rep-
resentative approaches of bifurcation control include wash-
out filter-aided dynamic feedback �12�, linear or nonlinear
state feedback �13,14�, harmonic balance approximation
�15�, and quadratic invariants in normal forms �16�. Bifurca-
tion control has been employed to eliminate seizing behavior
in the model system of human cortical electrical activity
�17�, and to stabilize high angle-of-attack flight dynamics
�18�.

In this study, we focus our attention on controlling the
onset of bifurcations in an individual neuron via bifurcation
control. In our previous paper �19�, we applied the bifurca-
tion control to a simple two-dimensional Hindmarsh-Rose
type neuron model �20� to change the types of neuronal ex-
citability. As is well known, the Hodgkin-Huxley �HH�
model �21� is a paradigmatic model of neurons, and it under-
goes a Hopf bifurcation from the steady state to periodic
spiking when the externally applied current is regarded as a
bifurcation parameter. Therefore, we take the HH model as
an example to show our control scheme and results with a
more realistic neuron model. In the HH model, we aim to
advance or delay the Hopf bifurcation to avoid its occurrence
in a certain range of externally applied current by using a
washout filter-aided dynamic feedback controller. Although
the bifurcation control of the HH model has already been
studied �22�, there are no clear mathematical criteria to select
the control gains. In this paper, according to the two basic
critical conditions for the emergence of the Hopf bifurcation,
i.e., the eigenvalue assignment and the transversality condi-
tion �23,24�, we employ an effective criterion to analytically
determine the control gains and move the Hopf bifurcation to
a desired parameter value. By the application of the center
manifold and normal form theory, we derive a closed-form
analytical expression for the bifurcation stability coefficient,
which dominates the criticality of the Hopf bifurcation and
simultaneously regulates the oscillation amplitude. In addi-
tion, we show the mixed-mode oscillation �MMO� pattern
and describe its dynamical mechanism.

This paper is organized as follows. In Sec. II, we briefly
describe the HH model and show its bifurcation behavior
with variation in the externally applied current. In Sec. III,
we employ a washout filter-aided dynamic feedback control-
ler to advance the Hopf bifurcation toward a stable equilib-
rium point where the criticality of the bifurcation is also
transformed from subcritical to supercritical. Simultaneously,
we show that the MMO patterns occur in the controlled HH
model. Moreover, the oscillation amplitude of the bifurcated
periodic solution is also controlled simultaneously. In Sec.
IV, we delay the Hopf bifurcation until an unstable equilib-
rium point. In Sec. V, we present the conclusions by giving
several general remarks.

II. HODGKIN-HUXLEY MODEL
AND ITS BIFURCATION DYNAMICS

The HH model is a quantitative model that describes how
the action potentials in neurons are initiated and propagated.

It is a set of nonlinear ordinary differential equations that
approximates the electrical characteristics of the nerve mem-
brane �21�. The HH equations are given as follows:

dV

dt
=

1

CM
�Iext − gNam

3h�V − VNa� − gKn4�V − VK�

− gL�V − VL�� ,

dm

dt
= �m�V��1 − m� − �m�V�m ,

dh

dt
= �h�V��1 − h� − �h�V�h ,

dn

dt
= �n�V��1 − n� − �n�V�n .

V represents the membrane potential, which is the electrical
potential difference �voltage� across the nerve membrane. m
and h are gating variables that represent the activation and
inactivation of the sodium ion channel, respectively. n de-
notes the activation gating variable of the potassium ion
channel. Obviously, m, h, and n obey equations of the same
form, but with different voltage dependences for their
steady-state values and time constants. �m, �m, �h, �h, �n,
and �n are functions of V that are defined as follows:

�m�V� = 0.1�25.0 − V�/�exp��25.0 − V�/10.0� − 1.0� ,

�m�V� = 4.0 exp�− V/18.0� ,

�h�V� = 0.07 exp�− V/20.0� ,

�h�V� = 1.0/�exp��− V + 30.0�/10.0� + 1.0� ,

�n�V� = 0.01�10.0 − V�/�exp��10.0 − V�/10.0� − 1.0� ,

�n�n� = 0.125 exp�− V/80.0� .

The HH model includes the following parameters: VNa
=115.0 mV, VK=−12.0 mV, and VL=10.599 mV, respec-
tively, representing the equilibrium potentials of the sodium,
potassium, and leak currents, and are determined by the
Nernst equation. Thus, these parameter values are control-
lable by changing the ionic concentrations inside and outside
the membrane. gNa=120.0 mS /cm2, gK=36.0 mS /cm2, and
gL=0.3 mS /cm2 represent the maximum conductance of the
corresponding ionic currents, which reflect the ionic-channel
density distributed over the membrane. CM =1.0 �F /cm2 is
the membrane capacitance. Iext represents the externally ap-
plied current, and in this study, we consider it to be a time-
independent dc current that serves as a bifurcation parameter
of the system.

The bifurcation diagram for the membrane potential V as
a function of Iext is shown in Fig. 1. From Fig. 1�a�, we can
see that the neuron undergoes a Hopf bifurcation �HB� from
quiescence to periodic spiking at Iext=9.780 �A /cm2. More-
over, the amplitude of the stable periodic oscillation de-

XIE et al. PHYSICAL REVIEW E 77, 061921 �2008�

061921-2



creases with an increase in the externally applied current, and
the periodic oscillation terminates at Iext=154.527 �A /cm2,
where another Hopf bifurcation occurs. From Fig. 1�b�, it
can be seen that the left Hopf bifurcation is subcritical.
Henceforth, we will restrict our discussions to the left Hopf
bifurcation because it is related to the dynamical mechanism
of neuronal excitability from quiescence to firing �25�, in
contrast to the right Hopf bifurcation, where the intensity of
the external stimulus current generally exceeds the normal
physiological range.

Note that all bifurcation diagrams in this paper were pro-
duced using the software package XPPAUT �26�, which is
software for the analysis and simulation of dynamical sys-
tems and can detect several bifurcation points automatically
and can trace both stable and unstable branches of steady
states and periodic solutions. In the XPPAUT software pack-
age, the fundamental tool of AUTO interface is pseudoarc-
length continuation, which is the most popular numerical
continuation method �27�. As we know, the ideal parametri-

zation of a curve is arclength, and pseudoarclength is an
approximation of the arclength in the tangent space of the
curve. Geometrically interpreted, the algorithm of pseudo-
arclength continuation finds a solution to the nonlinear sys-
tem in a hyperplane that is at a distance of pseudoarclength
�s from the current solution and that is perpendicular to the
tangent vector of the current solution. Usually a predictor-
corrector method is applied to find the solution at the given
pseudoarclength �s �27�.

III. BIFURCATION ADVANCE TOWARD Iext=5.0 �A Õcm2

In this section, we first employ a washout filter-aided dy-
namic feedback controller to advance the Hopf bifurcation
toward Iext=5.0 �A /cm2, derive the conditions to transform
the criticality of the bifurcation from subcritical into super-
critical, display the occurrence of the MMO pattern in the
controlled HH model, and finally show the regulation of the
oscillation amplitude.

A. Bifurcation advance

We advance the Hopf bifurcation point by a washout
filter-aided dynamic feedback controller. Actually, a washout
filter is a high-pass filter that washes out steady-state inputs
while passing transient inputs �28�. The use of washout filters
ensures that all the equilibrium points of the original system
are preserved in the controlled system, i.e., their location
remains unchanged. Recently, it was reported that washout
filter-aided dynamic feedback controllers can be employed
for the creation of Hopf bifurcations in continuous-time sys-
tems with arbitrary dimensions �29�. Here, we only add one
washout filter-aided dynamic feedback controller to the
right-hand side of the equation of the membrane potential. In
this study, we select the membrane voltage as an input to the
washout filter because it can be readily measured, and the
controller can be realized easily. Therefore, the equation of
the membrane potential with a washout filter-aided dynamic
feedback controller can be written as follows:

dV

dt
=

1

CM
�Iext − gNam

3h�V − VNa� − gKn4�V − VK�

− gL�V − VL� + u� ,

where u denotes the control input. On the other hand, the
equations for m, h, and n are the same as the HH model.

The washout filter-aided dynamic feedback controller as-
sumes the following dynamics �24�:

dw

dt
= V − dw � y ,

u = g�y� ,

where w and y are the state variable and the output variable
of the washout filter, respectively. g denotes the nonlinear
control function to be designed, and d denotes the reciprocal
of the filter time constant. As a result, the controlled system
is not four-dimensional but five-dimensional. There are two
constraint conditions that should be satisfied: one is d�0,

(a)

(b)

FIG. 1. �a� Bifurcation diagram of the HH model. The thick
solid lines represent stable equilibrium points, while the dotted line
represents unstable ones. The maxima and minima of stable and
unstable limit cycles are indicated by thin and dashed lines, respec-
tively. �b� The enlargement of �a� near the left Hopf bifurcation
point. The lines of all other bifurcation diagrams in this paper are
the same as this caption.
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which guarantees the stability of the washout filter; the other
is g�0�=0, which preserves the original equilibrium points.
Due to the nature of the washout filter, u=0 for ẇ=y=0.
Hence, all the equilibrium points remain unchanged when
control actions are applied. In this paper, we set d=0.1.

It is well known that only the quadratic and cubic terms in
a nonlinear system undergoing a Hopf bifurcation influence
the stability of the bifurcation �13,14�. However, in order to
simplify the selection of control parameters, we adopt a con-
troller having the following simple form with only a linear
term and a cubic term:

u = Kl�V − dw� + Kn�V − dw�3.

In what follows, we first determine the linear control gain Kl
because in our controller it only can contribute to the loca-
tion of the bifurcation point and advance the bifurcation to-
ward Iext=5.0 �A /cm2.

At Iext=5.0 �A /cm2, the original HH model behaves as a
single stable steady state, i.e., the stable equilibrium point
�V0 ,m0 ,h0 ,n0�= �3.266 72,0.077 20,0.479 38,0.368 70�.
However, the controlled HH has a modified equilibrium
point at Iext=5.0 �A /cm2, namely, �V0 ,m0 ,h0 ,n0 ,w0�
= �V0 ,m0 ,h0 ,n0 ,V0 /d�, from which a Hopf bifurcation ema-
nates. At this point, we can calculate the Jacobian matrix of
the controlled system. The characteristic equation of the
Jacobian matrix has the following form:

p0�5 + p1�4 + p2�3 + p3�2 + p4� + p5 = 0,

where pj with j=0,1 , . . . ,5 are dependent on the system pa-
rameters, the location of the equilibrium point, and the linear
control gain. Substituting them into pj, we can obtain

p0 = 1.0,

p1 = 5.021 04 − Kl,

p2 = 2.285 53 − 3.929 30Kl,

p3 = 1.621 61 − 1.159 11Kl,

p4 = 0.310 98 − 0.085 22Kl,

p5 = 0.016 68.

It is well known that if a Hopf bifurcation occurs at Iext
=5.0 �A /cm2, the Jacobian matrix of the controlled system
must satisfy two basic critical conditions, i.e., the eigenvalue
crossing condition and the transversality condition. One type
of degenerate Hopf bifurcation is the failure of the transver-
sality condition. Therefore, the characteristic equation has a

pair of pure imaginary eigenvalues �1=�0i and �2= �̄1=
−�0i, and the remaining eigenvalues have negative real parts.
Here, i is the imaginary unit. At the same time, the eigenval-
ues �1 and �2 cross the imaginary axis at some nonzero
speed at the bifurcation point. In order to avoid directly solv-
ing all eigenvalues, we adopt an effective criterion for de-
tecting the existence of Hopf bifurcations, which is based on
the Routh-Hurwitz stability criterion and is described by pj
instead of the eigenvalues �30�.

Thus, the eigenvalue crossing condition is equivalent to
the following conditions:

p5 � 0,

� j � 0, j = 1,2,3,

�4 = 0,

where

�1 = p1,

�2 = �p1 p0

p3 p2
� ,

�3 = �p1 p0 0

p3 p2 p1

p5 p4 p3
� ,

�4 = �
p1 p0 0 0

p3 p2 p1 p0

p5 p4 p3 p2

0 0 p5 p4

� .

On the other hand, the transversality condition is expressed
by

d��4�
dIext

� 0.

Substituting pi, i=0,1 , . . . ,5, into the eigenvalue crossing
condition, we obtain

�1 = 5.021 04 − Kl � 0,

�2 = 3.929 30Kl
2 − 20.855 62Kl + 9.854 13 � 0,

�3 = − 4.469 26Kl
3 + 29.378 90Kl

2 − 39.987 01Kl

+ 8.223 24 � 0,

�4 = 0.380 88Kl
4 − 3.636 14Kl

3 + 11.029 23Kl
2 − 11.707 80Kl

+ 2.207 47 = 0.

Obviously, p5�0 holds.
Solving the above inequalities and the equation, we can

obtain

Kl = 0.237 71.

With regard to the transversality condition, it can be numeri-
cally computed as

d��4�
dIext

= − 0.325 � 0,

which satisfies the transversality condition.
In this manner, we make the Hopf bifurcation at Iext

=9.780 �A /cm2 advance toward Iext=5.0 �A /cm2, which is
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clearly not degenerate in the sense of the transversality.
From the above calculation, it can be seen that Kn has no

effect on the location of the bifurcation point. Therefore, we
temporarily assume Kn=0, and calculate the bifurcation dia-
gram of the controlled system, as shown in Fig. 2. As ex-
pected, the Hopf bifurcation has been successfully advanced
toward Iext=5.0 �A /cm2, and is still subcritical.

B. Controlling the criticality of Hopf bifurcation

In this subsection, we control the criticality of the ad-
vanced Hopf bifurcation by the nonlinear control gain Kn.
Whether a Hopf bifurcation is subcritical or supercritical is
determined typically by the sign of the bifurcation stability
coefficient of the dynamical system near the equilibrium.
The bifurcated limit cycle is orbitally stable or the bifurca-
tion is supercritical if the bifurcation stability coefficient is
negative. Otherwise, it is unstable and the bifurcation is sub-
critical.

In what follows, we apply the center manifold and normal
form theory to derive the closed-form analytical expression
of the bifurcation stability coefficient �2 for the controlled
HH model. After determining the linear control gain, Kl

=0.237 71, the Jacobian matrix of the controlled system be-
comes a constant matrix. In this manner, we can numerically
calculate all eigenvalues of the matrix and their correspond-
ing eigenvectors. Actually, this is a necessary step in deriving
�2 with respect to Kn in order to employ the center manifold
and normal form theory.

The constant matrix is given as

	
− 0.754 03 114.909 65 6.168 08 − 110.187 29 − 0.023 77

0.031 52 − 3.615 20 0.0 0.0 0.0

− 0.0044 0.0 − 0.124 02 0.0 0.0

0.003 01 0.0 0.0 − 0.190 08 0.0

1.0 0.0 0.0 0.0 − 0.1

 .

The eigenvalues and their corresponding eigenvectors are as
follows:

�1 = 7.564 28 	 10−19 + 0.518 10i ,

�2 = 7.564 28 	 10−19 − 0.518 10i ,

�3 = − 0.104 82,

�4 = − 0.130 31,

�5 = − 4.548 20,

and

v1 = 	
− 0.088 44 − 0.458 21i

− 0.001 32 − 0.003 81i

0.003 89 + 0.000 17i

− 0.002 51 − 0.000 41i

− 0.884 41

, v2 = v̄1,

v3 = 	
0.004 82

0.000 04

− 0.001 11

0.000 17

− 1.000 00

, v4 = 	

0.030 29

0.000 27

0.021 38

0.001 53

− 0.999 31

 ,

(a)

(b)

FIG. 2. �a� Bifurcation diagram of the controlled HH model with
Kl=0.237 71 and Kn=0. �b� The enlargement of �a� near the left
Hopf bifurcation point.
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v5 = 	
0.975 12

− 0.032 94

0.000 98

− 0.000 67

− 0.219 22

 .

Due to the very small real parts of �1 and �2, the matrix can
be approximately considered to have a pair of pure imagi-
nary eigenvalues. The remaining eigenvalues are negative.
For notational simplicity, let �0=0.518 10 and

M = 	− 0.104 82 0 0

0 − 0.130 31 0

0 0 − 4.548 20

 .

We construct a matrix in the following manner:

P = „Re�v1�,− Im�v1�,v3,v4,v5…

and take the following coordinate transformation:

	
V

m

h

n

w

 = 	

V0

m0

h0

n0

w0


 + P	
X1

X2

X3

X4

X5


 .

Substituting the coordinate transformation into the controlled
HH model, and then making the following transformation,
we can obtain a system under a new coordinate system as
follows:

	
dX1

dt

dX2

dt

dX3

dt

dX4

dt

dX5

dt


 = P−1	
dV

dt

dm

dt

dh

dt

dn

dt

dw

dt


 = 	
F1�X1,X2,X3,X4,X5�
F2�X1,X2,X3,X4,X5�
F3�X1,X2,X3,X4,X5�
F4�X1,X2,X3,X4,X5�
F5�X1,X2,X3,X4,X5�


 ,

where P−1 is the inverse matrix of P, and

P−1 = 	
0.201 96 14.330 78 20.828 77 − 351.562 57 − 0.081 41

1.801 44 55.205 35 2.581 42 − 86.031 12 − 0.006 45

− 0.181 56 − 5.943 16 − 58.321 20 234.621 91 − 0.896 26

− 0.040 82 − 1.345 96 39.987 79 75.253 03 − 0.032 01

0.199 50 − 24.570 17 − 0.278 13 5.043 88 0.001 07

 .

At �X1 ,X2 ,X3 ,X4 ,X5�= �0,0 ,0 ,0 ,0�, by ignoring very small
entries, the Jacobian matrix of the new system has the real
canonical form

	 0 − �0 0

�0 0 0

0 0 M

 .

In this manner, we can employ the center manifold and nor-
mal form theory to derive the closed-form analytical expres-
sion for the bifurcation stability coefficient �2, which has a
unified expression for a system possessing a real canonical
form by following the same procedures in �31�. Therefore,
we can take advantage of the expression of the bifurcation
stability coefficient �2 in a straightforward way, which is
written as

�2�Kn� = 2 Re��g20g11 − 2g112 − 1
3 g022� i

2�0
+

g21�Kn�
2

� ,

where

g20 =
1

4
� �2F1

�X1
2 −

�2F1

�X2
2 + 2

�2F2

�X1�X2

+ i� �2F2

�X1
2 −

�2F2

�X2
2 − 2

�2F1

�X1�X2
�� ,

g11 =
1

4
� �2F1

�X1
2 +

�2F1

�X2
2 + i� �2F2

�X1
2 +

�2F2

�X2
2 �� ,

g02 =
1

4
� �2F1

�X1
2 −

�2F1

�X2
2 − 2

�2F2

�X1�X2

+ i� �2F2

�X1
2 −

�2F2

�X2
2 + 2

�2F1

�X1�X2
�� ,

g21�Kn� = G21�Kn� + �
k=1

3

�2G110
k s11

k + G101
k s20

k � ,

XIE et al. PHYSICAL REVIEW E 77, 061921 �2008�

061921-6



G21�Kn� =
1

8
� �3F1

�X1
3 +

�3F1

�X1�X2
2 +

�3F2

�X1
2�X2

+
�3F2

�X2
3

+ i� �3F2

�X1
3 +

�3F2

�X1�X2
2 −

�3F1

�X1
2�X2

−
�3F1

�X2
3 ��

G110
j−2 =

1

2
� �2F1

�X1�Xj
+

�2F2

�X2�Xj
+ i� �2F2

�X1�Xj
−

�2F1

�X2�Xj
�� ,

G101
j−2 =

1

2
� �2F1

�X1�Xj
−

�2F2

�X2�Xj
+ i� �2F1

�X2�Xj
+

�2F2

�X1�Xj
��

for j=3,4 ,5.
s11

k and s20
k are the components of the three-dimensional

vectors s11= �s11
1 ,s11

2 ,s11
3 �T and s20= �s20

1 ,s20
2 ,s20

3 �T, respec-
tively. Here, the vectors s11 and s20 are the solutions of the
following linear equations, respectively:

Ms11 = − h11 and �M − 2i�0I�s20 = − h20,

where I represents the 3	3 identity matrix. h11
= �h11

1 ,h11
2 ,h11

3 �T and h20= �h20
1 ,h20

2 ,h20
3 �T are three-

dimensional vectors with the following components:

h11
j−2 =

1

4
� �2Fj

�X1
2 +

�2Fj

�X2
2 � ,

h20
j−2 =

1

4
� �2Fj

�X1
2 −

�2Fj

�X2
2 − 2i

�2Fj

�X1�X2
�

for j=3,4 ,5.
Note that the expressions of g20, g11, and g02 are not

changed for a system of arbitrary dimension with a real ca-
nonical form in the expression of �2, and they are just sub-
jected to the former two equations. On the other hand, all the
equations of the system contribute to the expression of
g21�Kn�.

As given above, all derivatives take values at
�X1 ,X2 ,X3 ,X4 ,X5�= �0,0 ,0 ,0 ,0�. Consequently, we can ob-
tain the closed-form analytical expression for �2 as follows:

�2 = 0.987 84 	 10−3 + 2 Re�− i0.728 60 	 10−2Kn

+ 0.649 90 	 10−1Kn� .

If Kn is a real number with Kn
−7.5999	10−3, �2
0.
Thus, Kn
−7.5999	10−3 ensures that the limit cycle bifur-
cated from the Hopf bifurcation is asymptotically stable, and
that the Hopf bifurcation is supercritical. In contrast, if Kn
�−7.5999	10−3, �2�0 and the bifurcation is subcritical. In
order to confirm the accuracy of our analytical expression for
�2, we calculate the bifurcation diagrams of the controlled
system for the two cases of Kn
−7.5999	10−3 and Kn
�−7.5999	10−3. Let Kn=−0.008 and −0.007, respectively.
When Kn=−0.008, the corresponding bifurcation diagram is
shown in Fig. 3. From Fig. 3�b�, it is evident that the Hopf
bifurcation is supercritical. Figure 4 shows the bifurcation
diagram of the controlled system with Kn=−0.007. Obvi-
ously, the Hopf bifurcation of Fig. 4�b� is subcritical. Figures
3 and 4 confirm the validity of the criterion and the expres-
sion for the bifurcation stability coefficient. At the same

time, we can see that the location of the bifurcation point
remains unchanged, i.e., it remains at Iext=5.0 �A /cm2. This
shows that Kn does not contribute to the location of the bi-
furcation point, but it can influence the criticality of the
bifurcation.

C. Mixed-mode oscillations

We can see that there are period-doubling �PD� cascades
in Figs. 3�b� and 4�b� that closely follow the Hopf bifurca-
tions where we simply mark the locations of the first period-
doubling bifurcations, and those of the second and higher
ones are not shown. For example, let us investigate the neu-
ronal behavior in the range of Iext from 5.2 to 6.5 �A /cm2

under the condition of Kl=0.237 71 and Kn=−0.008 in a dif-
ferent method. That is, we study the change in local maxima
of the membrane potential as a function of Iext, which can be
considered as a form of Poincaré section, as shown in Fig. 5.
Evidently, neuronal oscillations exhibit the alternating cha-
otic and periodic responses as Iext is varied. From Fig. 5�b�,
we can see that a series of period-doubling bifurcations leads
from periodic oscillations to chaotic ones, which is a classi-
cal road to chaos in dynamical systems.

(a)

(b)

FIG. 3. �a� Bifurcation diagram of the controlled HH model with
Kl=0.237 71 and Kn=−0.008. �b� The enlargement of �a� near the
left Hopf bifurcation point.
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Figure 6 shows the time series of the membrane potential
at Iext=5.5 �A /cm2. This periodic spiking is a famous
mixed-mode oscillation �MMO�, which is a phenomenon
quite often encountered in both experiments and models of
chemical and biological systems �32,33�. In general, MMOs
consist of L large-amplitude relaxation oscillations followed
by s small-amplitude oscillations, and the symbol Ls is as-
signed to this pattern �34�. In the context of neurodynamics,
large-amplitude relaxation oscillations correspond to firing of
action potentials while small-amplitude oscillations corre-
spond to subthreshold oscillations �STOs�. In this paper, L
denotes the number of large peaks and s is the number of
small peaks in one period. For example, the time series of the
membrane potential in Fig. 6 is a 13 mixed-mode oscillation.
According to Fig. 5�a�, we can determine that Iext=5.7, 6.0,
6.2, and 6.33 �A /cm2 correspond to 12, 11, 21, and 31

MMOs, respectively. Figure 7 shows the time series of the
membrane potential when Iext=6.33 �A /cm2, and it displays
clearly a 31 MMO. In Fig. 5, the regions in which the profile
of lines is clear correspond to periodic oscillations, such as
Iext=5.5 and 6.33 �A /cm2, which are shown in Figs. 6 and
7, respectively. On the other hand, the regions where the
profile of lines is vague correspond to chaotic oscillations.

(a)

(b)

FIG. 4. �a� Bifurcation diagram of the controlled HH model with
Kl=0.237 71 and Kn=−0.007. �b� The enlargement of �a� near the
left Hopf bifurcation point.

(a)

(b)

FIG. 5. �a� Bifurcation diagram of the controlled HH model with
Kl=0.237 71 and Kn=−0.008 extracting local maxima of the mem-
brane potential. �b� The enlargement of �a� in the range of Iext from
5.330 to 5.365 �A /cm2.

FIG. 6. Time series of the membrane potential in the controlled
HH model with Kl=0.237 71, Kn=−0.008, and Iext=5.5 �A /cm2.
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For instance, Fig. 8 shows the time series of the membrane
potential and the projection of the system’s trajectory to the
V-n phase plane when Iext=6.15 �A /cm2. We can see that a
chaotic spiking occurs in the controlled HH model from Fig.

8. Note that this kind of chaotic spiking does not arise in the
original HH model.

More interestingly, the phenomenon with slow firing ap-
pears in the controlled HH model. Figure 9 shows the change
in the interspike intervals �ISIs� of the controlled HH model
with Kl=0.237 71 and Kn=−0.008 as a function of Iext. Note
that the ordinate of Fig. 9 is the logarithm of ISIs. It is
observed that the ISI increases from several tens to several
thousand milliseconds as the value of Iext decreases. Further-
more, the ISI becomes an arbitrary large number through
more detailed numerical computations. That is, the firing rate
is arbitrarily low. At about Iext=5.366 �A /cm2, the neuron
terminates firing of action potentials. As we know, such slow
firing in single neuron models could be achieved only by
type-I neurons. Here, however the controlled HH model is
still classified as a type-II neuron, as is the original HH
model. It should be noted that a kind of slow firing has also
been found in �35�.

In what follows, we present the dynamical mechanism
underlying the MMO pattern and the slow firing. Figure 10
shows the change in oscillation amplitudes as a function of
Iext in the controlled HH model with Kl=0.237 71 and Kn
=−0.008. We can see that small-amplitude limit cycles ema-
nate from the Hopf bifurcation at Iext=5.0 �A /cm2. At Iext
=5.366 �A /cm2, the oscillation amplitude jumps abruptly
from a small value to a large one. This sudden change is
known as the canard explosion, witch is also called the ca-
nard phenomenon, where a small-amplitude limit cycle
grows through a sequence of canard cycles to a large-
amplitude relaxation oscillation as the control parameter
moves through an interval of exponentially small width, and
their physical implications are currently under intense inves-
tigation �36,37�. Similar to the description in �38�, therefore,
a transition from excitable states to spiking is found where a
Hopf bifurcation is followed by a cascade of period-doubling
bifurcations and chaotic small excitable attractors and, as
they grow, by the canard explosion, where a small chaotic
background erratically but deterministically triggers spiking
in the controlled HH model. The occurrence of the MMO
pattern is closely related to the canard explosion, and their

FIG. 7. Time series of the membrane potential in the controlled
HH model with Kl=0.237 71, Kn=−0.008, and Iext=6.33 �A /cm2.

(a)

(b)

FIG. 8. �a� Time series of the membrane potential in the con-
trolled HH model with Kl=0.237 71, Kn=−0.008, and Iext

=6.15 �A /cm2. �b� The projection of the full system’s trajectory to
the V-n phase plane.

FIG. 9. Bifurcation diagram of ISI versus Iext in the controlled
HH model with Kl=0.237 71 and Kn=−0.008.
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relation was first demonstrated by Milik et al. �33�. This type
of MMO can be explained as a combination of large-
amplitude relaxation oscillations and small-amplitude sub-
threshold oscillations mediated by canard solutions that are
associated with a folded singularity on a critical manifold
�33,34,39�. Canard solutions originate in a stable critical
manifold and continue to an unstable critical manifold while
passing through a lower fold region of nonhyperbolic behav-
ior. In the neurodynamics canard solutions, neither perform
subthreshold oscillations nor spiking, but can act as dynamic
boundaries between regions of subthreshold oscillations and
spiking �40�. The main difference in the dynamics between
subthreshold oscillations and spiking occurs near the lower
fold region of the critical manifold, where the flow of the
neuronal system either jumps immediately to the upper
stable critical manifold and creates a spiking or stays longer
near the fold region and produces subthreshold oscillations
before jumping �34�. If the unstable critical manifold is close
enough to the stable critical manifold in the lower fold re-
gion, then the system’s trajectory almost always moves back-
ward toward the stable critical manifold. In this manner, such
subthreshold oscillations persist over a considerably long
time. Thus the period of spiking or ISI is prolonged, that is,
the firing rate is slowed down.

Note that the MMOs also appear in the controlled HH
model with Kl=0.237 71 and Kn=−0.007 in Fig. 4�b� �not
shown�.

D. Regulation of oscillation amplitude

Kn can also regulate the oscillation amplitude of the bi-
furcated limit cycle. In the controller, we set Kl=0.237 71
and let Kn be a free parameter. In other words, the Hopf
bifurcation is advanced toward Iext=5.0 �A /cm2. Now, we
calculate the maxima and minima of the membrane potential
as a function of Kn at Iext=20.0 �A /cm2, as shown in Fig.
11. They correspond to the oscillation amplitudes of the bi-

furcated limit cycles at Iext=20.0 �A /cm2. Figure 12 illus-
trates the time series of the membrane potential for four dif-
ferent Kn values, i.e., Kn=0, −0.01, −0.03, and −0.08. From
Figs. 11 and 12, it can be observed that the oscillation am-
plitude of the bifurcated limit cycle decreases with decreas-
ing the value of Kn.

In this section, through a washout filter-aided dynamic
feedback controller, we have successfully advanced the Hopf
bifurcation toward a stable steady state according to the ei-
genvalue crossing condition and the transversality condition,
adopting an effective measure based on the Routh-Hurwitz
stability criterion. Further, the closed-form analytical expres-
sion for the bifurcation stability coefficient has been derived
by the center manifold and normal form theory. We have
shown the MMO pattern in the controlled HH model, pre-
sented its dynamical mechanism, and explained how a sig-
nificant slowing of the firing rate may occur in this system.
Finally, we have demonstrated that Kn can regulate the oscil-
lation amplitude of the bifurcated limit cycle.

FIG. 10. Oscillation amplitudes �the maxima of the membrane
potential Vmax minus the minima of the membrane potential Vmin� as
a function of Iext in the controlled HH model with Kl=0.237 71 and
Kn=−0.008.

FIG. 11. The maxima and minima of the membrane potential as
a function of Kn. The upper line and the lower line represent the
maxima and minima of the membrane potential, respectively.

FIG. 12. Time series of the membrane potential for four differ-
ent Kn values in the controlled HH model with Kl=0.237 71 and
Iext=20.0 �A /cm2.
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IV. BIFURCATION DELAY UNTIL Iext=15.0 �A Õcm2

In contrast to advancing the Hopf bifurcation toward a
region of stable steady states, we can also delay the Hopf
bifurcation of the original system at Iext=9.780 �A /cm2 to-
ward a region of unstable steady states by using the washout
filter-aided dynamic feedback controller. For example, when
Iext=15.0 �A /cm2, the original system has an unstable
steady state, i.e., �7.069 39, 0.117 05, 0.348 99, 0.429 26�,
which coexists with a stable limit cycle. In what follows, we
delay the Hopf bifurcation to the bifurcation point with Iext
=15.0 �A /cm2.

In the same manner as shown in the preceding section, we
can obtain Kl=−0.276 81. Here, d��4� /dIext=−1.037�0,
which satisfies the transversality condition. The bifurcation
diagram of the controlled system is shown in Fig. 13. From
Fig. 13�b�, it is evident that the Hopf bifurcation is delayed
to Iext=15.0 �A /cm2, and it is subcritical.

Similarly, in order to control the criticality of the Hopf
bifurcation, we can derive the closed-form analytical expres-
sion for the bifurcation stability coefficient as a function of
Kn as follows:

�2 = 0.106 13 	 10−2 + 2 Re�0.667 23 	 10−1Kn

− i0.421 23 	 10−2Kn� .

When Kn
−7.952 70	10−2, �2
0 and the Hopf bifurca-
tion is supercritical. On the other hand, if Kn�−7.952 70
	10−2, �2�0 and thus the Hopf bifurcation is subcritical.
We examine the change in the criticality of the bifurcation
between Kn
−7.952 70	10−2 and Kn�−7.952 70	10−2.
Let Kn=−0.0085 and −0.0075, respectively. The bifurcation
diagrams for Kn=−0.0085 and −0.0075 are shown in Figs. 14
and 15, respectively. Obviously, with regard to the criticality
of the bifurcation, the former is supercritical while the latter
is subcritical. Therefore, Kn
−7.952 70	10−2 ensures that
the limit cycle bifurcated from the Hopf bifurcation is as-
ymptotically stable, and the Hopf bifurcation changes from
subcritical into supercritical. At the same time, it can be seen
that the bifurcation point Iext=15.0 �A /cm2 remains con-
stant. This again shows that the nonlinear control gain Kn has
no effect on the location of the bifurcation point, but influ-
ences the criticality of the bifurcation.

As with Fig. 3, there also exist MMOs between the PD
cascade and the periodic spiking in Figs. 14 and 15, respec-
tively �not shown�.

(a)

(b)

FIG. 13. �a� Bifurcation diagram of the controlled HH model
with Kl=−0.276 81 and Kn=0. �b� The enlargement of �a� near the
left Hopf bifurcation point.

(a)

(b)

FIG. 14. �a� Bifurcation diagram of the controlled HH model
with Kl=−0.276 81 and Kn=−0.0085. �b� The enlargement of �a�
near the left Hopf bifurcation point.
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V. CONCLUDING REMARKS

In this study, we have controlled the onset of Hopf bifur-
cation in the HH model neuron. Hopf bifurcation can be
moved to a desired point irrespective of whether the corre-
sponding steady state is stable or unstable by using a wash-
out filter-aided dynamic feedback controller. In particular, we

have advanced and delayed the Hopf bifurcation to avoid its
occurrence in the range from Iext=5 to 15 �A /cm2. The con-
troller contains only two terms, namely the linear term and
the nonlinear cubic term. We have deduced the linear control
gain Kl according to the two basic critical conditions for
Hopf bifurcations, i.e., the eigenvalue crossing condition and
the transversality condition, by an effective measure based
on the Routh-Hurwitz stability criterion. Through a coordi-
nate transformation, the controlled HH model has been trans-
formed into a new system with a canonical form. Thus, the
closed-form analytical expression for the bifurcation stability
coefficient, which is a function of the nonlinear control gain
Kn, has been derived by the application of the center mani-
fold and normal form theory. In this manner, we can change
the criticality of the Hopf bifurcation from subcritical to su-
percritical by the nonlinear control gain Kn. It has been ob-
served that the nonlinear control gain Kn has no effect on the
location of the bifurcation. We have also shown that the
MMO pattern occurs in the controlled HH model, presented
that it is closely related to the canard explosion, and ex-
plained how a significant slowing of the firing rate may oc-
cur in this system. Moreover, we have shown that chaotic
spiking appears in the controlled HH model. Note that the
MMO pattern and chaotic spiking do not occur in the origi-
nal HH model. Finally, we have shown that Kn can regulate
the oscillation amplitude of the limit cycle bifurcated from
the Hopf bifurcation. By controlling the onset of Hopf bifur-
cation in the HH model neuron, we believe that the informa-
tion provided in this paper may have important implications
for the understanding of the underlying physiological mecha-
nisms, and may establish a possible starting point for future
clinical applications for dynamical diseases of the nervous
system.
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